Accuracy of predicting genomic breeding values for carcass merit traits in Angus and Charolais beef cattle.

896

Source: Agriculture and Agri-Food Canada

Chen, L., Vinsky, M.D., and Li, C. (2015). “Accuracy of predicting genomic breeding values for carcass merit traits in Angus and Charolais beef cattle.”, Animal Genetics, 46(1), pp. 55-59. doi : 10.1111/age.12238  Access to full text

Abstract

Accuracy of predicting genomic breeding values for carcass merit traits including hot carcass weight, longissimus muscle area (REA), carcass average backfat thickness (AFAT), lean meat yield (LMY) and carcass marbling score (CMAR) was evaluated based on 543 Angus and 400 Charolais steers genotyped on the Illumina BovineSNP50 Beadchip. For the genomic prediction within Angus, the average accuracy was 0.35 with a range from 0.32 (LMY) to 0.37 (CMAR) across different training/validation data-splitting strategies and statistical methods. The within-breed genomic prediction for Charolais yielded an average accuracy of 0.36 with a range from 0.24 (REA) to 0.46 (AFAT). The across-breed prediction had the lowest accuracy, which was on average near zero. When the data from the two breeds were combined to predict the breeding values of either breed, the prediction accuracy averaged 0.35 for Angus with a range from 0.33 (REA) to 0.39 (CMAR) and averaged 0.33 for Charolais with a range from 0.18 (REA) to 0.46 (AFAT). The prediction accuracy was slightly higher on average when the data were split by animal’s birth year than when the data were split by sire family. These results demonstrate that the genetic relationship or relatedness of selection candidates with the training population has a great impact on the accuracy of predicting genomic breeding values under the density of the marker panel used in this study.

LEAVE A REPLY

Please enter your comment!
Please enter your name here